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Motivation

• A cab was involved in a hit-and run accident at night.
Two cab companies (Green and Blue) operate the city.
85% of the cabs in the city are Green, 15% are Blue. A
witness identifies the cab as Blue. The court tested the
reliability of the witness under the circumstances that
existed on the night of the accident and concluded that
the witness correctly identified each one of the two colors
80% of the time and failed 20% of the time.

• What is the probability that the cab involved in the
accident was Blue rather than Green?
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Subjective Probability

• Bayesian probability statements are thus about states of
mind over states of the world, and not about states of the
world per se.

• Borel: one can guess the outcome of a coin toss while the
coin is still in the air and its movement is perfectly
determined, or even after the coin has landed but before
one reviews the result.

• Not just any subjective uncertainty: beliefs must conform
to the rules of probability.
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Bayes Theorem

The mantra:
p(✓|y) / p(✓)p(y |✓) (1)

• A posterior density is proportional to the prior times the
likelihood

• It is a general method for induction or for “learning from
data.”

• prior ! data ! posterior
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Bayes Theorem

Bayes Theorem for the probability of two events A and B
with Pr(B) > 0 states that

Pr(A|B) = Pr(B|A)Pr(A)
Pr(B)

where:
• Pr(A|B) posterior probability of A given B .
• Pr(B |A) probability of B given A (likelihood).
• Pr(A) prior probability of A (unconditional).
• Pr(B) probability of B (unconditional; normalizes the

posterior probability to 1).
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Contrast Frequentist Inference

Bayesian Frequentist

✓ random fixed but unkown

✓̂ fixed random
“random-ness” subjective sampling

distribution of interest posterior sampling distribution

p(✓|y) p( ˆtheta(y)|✓ = ✓H0)
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Example case

• Suppose we have to assess whether an athlete used a
prohibited substance after observing a positive test result.

• Prior work suggests that about 3% of the subject pool
(elite athletes) uses a particular prohibited drug.

• HU : test subject uses the prohibited substance.

• E (evidence) is a positive test result.

• Test has a false negative rate of .05; i.e.,
P(⇠ E |HU) = .05 ) P(E |HU) = .95

• Test has a false positive rate of .10: i.e., P(E |H⇠U) = .10
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Bayes consistency

• Bayesian asymptotics: with an arbitrarily large amount of
sample information relative to prior information, the
posterior density tends to the likelihood (normalized to be
a density over ✓).

• Central limit arguments: since likelihoods are usually
approximately normal in large samples, then so too are
posterior densities.

• Thus Bayesian estimates converge to frequentist /
likelihoodist estimates as N ! inf.
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Prior, Likelihood, and Posteriors
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Prior, Likelihood, and Posteriors

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

Prior

theta

re
s[

, 1
]

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

Likelihood

theta

re
s[

, 2
]

−10 −5 0 5 10

0.
00

00
0.

00
10

0.
00

20
0.

00
30 Posterior

theta

re
s[

, 3
]



Motivation

Bayes

Theorem

Monte Carlo

methods

Application:

Ideal point

estimates

Practical

Example

Prior, Likelihood, and Posteriors
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Prior, Likelihood, and Posteriors

• Cromwell’s Rule (or the dangers of dogmatism).
• A dogmatic prior that assigns either zero or one probability

to a hypothesis can never be revised
• After the English deposed, tried and executed Charles I in

1649, the Scots invited Charles’ son, Charles II, to become
king. The English regarded this as a hostile act, and Oliver
Cromwell led an army north. Prior to the outbreak of
hostilities, Cromwell wrote to the synod of the Church of
Scotland, “I beseech you, in the bowels of Christ, consider
it possible that you are mistaken.”
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Prior, Likelihood, and Posteriors
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Monte Carlo methods

• We will usually find problems that are hard to solve
analytically.

• It is often possible to create a set of simulated values from
a target distribution that share the same distributional
properties even if we cant describe analytically, or even
sample directly from, that distribution.

• Applied Bayesian statistics describes posterior beliefs using
empirical summaries of the posterior distribution sampled
via monte carlo methods.
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Monte Carlo methods

• Example: suppose we are interested in the expected value
E (✓).

• Analytically, we would compute E (✓) =
R b
a ✓p(✓)d✓. In

some cases, the math is hard.

• Monte Carlo estimate:
• Sample ✓ from p(✓), T times, ✓(1), ✓(2), ..., ✓(T ), with T

large.
• Calculate

dE (✓) = 1
T

P
t=1 T✓(t)

• The larger the T , the closer dE (✓) to E (✓).
• Generalizes to vectors ✓ and to functions of ✓ ,h(✓).
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Markov chain Monte Carlo

(MCMC)

• In general, we can’t simply sample from the posterior
density p(✓|y) because

• theta is a big object with many elements.
• p(✓|y) is a complicated function, di�cult to sample from.

• Methods to sample from p usually require us to give up
the independence of the series of sampled values.

• A Markov chain is a stochastic process: the common
analogy is to a particle moving at random through space.

• The particles location at time t is a random movement
away from where it was at t � 1. Even though the
movement is random, the chain is auto-correlated, because
t is more likely to be close to t � 1 than far.
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Markov chain

• Consider a sequence of random variables (a stochastic
process), ✓(t) for t = 1, 2, 3, ...T .

• We can write:

Pr(✓(t+1)|✓(t), ..., ✓(1))
• That is, we can characterize the probabilities of the
stochastic outcome ✓(t+1) in terms of the prior history of
the chain.

• If the process is a Markov chain, the next value depends
only on the most recent value:

Pr(✓(t+1)|✓(t), ..., ✓(1)) = Pr(✓(t+1)|✓(t))
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EITM

1 Identify a theoretical concept of human behavior of your
interest and relate it to a statistical concept.

• Decision making
• Nominal Choice

2 Develop behavioral (formal) and statistical analogues
• Utility maximization
• Discrete choice modeling (Yea/Nay)

3 Unite the theoretical and statistical analogues in testable
theory...
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EITM

Ui (Yj) = �(xi � Yj)
2 + ✏ijY

Ui (Nj) = �(xi � Nj)
2 + ✏ijN

Pr(yij = 1) = Pr [Ui (Yj) > Ui (Nj)] = f (xi�j � ↵j)

where:

�j = 2(Yj � Nj)

↵j = Y 2
j � N2

j

↵j/�j =
Yj+Nj

2
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Ideal Point Estimates

Ideal points estimates vary in assumptions about the
deterministic and stochastic parameters
Quadratic loss

f (xi ,Yj)� (xi ,Nj) = �(xi � Yj) + (xi � Nj)
2 = xi�j � ↵j

Nominate

f (xi ,Yj)� (xi ,Nj) =
�[exp(�1

2(xi � Yj)
2)� exp(�1

2(xi � Nj)
2)]



Motivation

Bayes

Theorem

Monte Carlo

methods

Application:

Ideal point

estimates

Practical

Example

Parameter Identification

The model parameters are unidentified without further
restrictions. Two potential solutions:

• “Anchoring” the estimates with respect to at least one
individual

• Provide some informative priors
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Item-Characteristic Curve

Jackman (2011)
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Practical Example

• There are ten legislators and two parties

• Legislators vote on 100 bills



Motivation

Bayes

Theorem

Monte Carlo

methods

Application:

Ideal point

estimates

Practical

Example

model{

###loop over legislators

for (i in 1:n) {

###loop over roll calls

for (j in 1:m){

probit(p[i,j])<-x[i]*beta[j] - alpha[j]

y[i,j]~dbern(p[i,j])

}}

###priors

for(i in 1:5){

x[i]~dnorm(0.5,1)

}

for(i in 6:10){

x[i]~dnorm(-0.5,1)

}

for (j in 1:m){

beta[j]~dnorm(0,.01)

alpha[j]~dnorm(0,.01)

}}
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